La interface Math
Math es la clase predefinida de Java que contiene el código de las operaciones o métodos más usuales de enteros y reales, más allá de las aritméticas:
- raíz cuadrada (sqrt), potencia (pow),
- mínimo o máximo de dos valores (min, max)
- funciones trigonométricas (sin, cos, tan, ... ),
- logarítmicas, neperiano ln y en base 10 (log, log10),
- valor absoluto (abs),
- redondeos por aproximación, al alza o a la baja (round, ceil, floor),
- cálculo de valores aleatorios (random),
• Define además dos constantes:
-PI, con el valor double más cercano a pi,
-E, con el valor double más cercano a e, base del ln.
• Se usan con el prefijo Math. seguido de la constante u operación.
• Ejemplo:
double diametro = 23.45;
double volumen = 4.0/3.0*Math.PI*Math.pow(diametro/2,3);
• Los detalles se pueden consultar en la documentación:
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
Class Math
- java.lang.Object
- java.lang.Math
public final class Math extends Object
The classMath
contains methods for performing basic numeric operations such as the elementary exponential, logarithm, square root, and trigonometric functions.Unlike some of the numeric methods of class
StrictMath
, all implementations of the equivalent functions of classMath
are not defined to return the bit-for-bit same results. This relaxation permits better-performing implementations where strict reproducibility is not required.By default many of the
Math
methods simply call the equivalent method inStrictMath
for their implementation. Code generators are encouraged to use platform-specific native libraries or microprocessor instructions, where available, to provide higher-performance implementations ofMath
methods. Such higher-performance implementations still must conform to the specification forMath
.The quality of implementation specifications concern two properties, accuracy of the returned result and monotonicity of the method. Accuracy of the floating-point
Math
methods is measured in terms of ulps, units in the last place. For a given floating-point format, an ulp of a specific real number value is the distance between the two floating-point values bracketing that numerical value. When discussing the accuracy of a method as a whole rather than at a specific argument, the number of ulps cited is for the worst-case error at any argument. If a method always has an error less than 0.5 ulps, the method always returns the floating-point number nearest the exact result; such a method is correctly rounded. A correctly rounded method is generally the best a floating-point approximation can be; however, it is impractical for many floating-point methods to be correctly rounded. Instead, for theMath
class, a larger error bound of 1 or 2 ulps is allowed for certain methods. Informally, with a 1 ulp error bound, when the exact result is a representable number, the exact result should be returned as the computed result; otherwise, either of the two floating-point values which bracket the exact result may be returned. For exact results large in magnitude, one of the endpoints of the bracket may be infinite. Besides accuracy at individual arguments, maintaining proper relations between the method at different arguments is also important. Therefore, most methods with more than 0.5 ulp errors are required to be semi-monotonic: whenever the mathematical function is non-decreasing, so is the floating-point approximation, likewise, whenever the mathematical function is non-increasing, so is the floating-point approximation. Not all approximations that have 1 ulp accuracy will automatically meet the monotonicity requirements.The platform uses signed two's complement integer arithmetic with int and long primitive types. The developer should choose the primitive type to ensure that arithmetic operations consistently produce correct results, which in some cases means the operations will not overflow the range of values of the computation. The best practice is to choose the primitive type and algorithm to avoid overflow. In cases where the size is
int
orlong
and overflow errors need to be detected, the methodsaddExact
,subtractExact
,multiplyExact
, andtoIntExact
throw anArithmeticException
when the results overflow. For other arithmetic operations such as divide, absolute value, increment, decrement, and negation overflow occurs only with a specific minimum or maximum value and should be checked against the minimum or maximum as appropriate.- Since:
- JDK1.0
Field Summary
Modifier and Type Field and Description static double
E
Thedouble
value that is closer than any other to e, the base of the natural logarithms.static double
PI
Thedouble
value that is closer than any other to pi, the ratio of the circumference of a circle to its diameter.
Method Summary
Modifier and Type Method and Description static double
abs(double a)
Returns the absolute value of adouble
value.static float
abs(float a)
Returns the absolute value of afloat
value.static int
abs(int a)
Returns the absolute value of anint
value.static long
abs(long a)
Returns the absolute value of along
value.static double
acos(double a)
Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.static int
addExact(int x, int y)
Returns the sum of its arguments, throwing an exception if the result overflows anint
.static long
addExact(long x, long y)
Returns the sum of its arguments, throwing an exception if the result overflows along
.static double
asin(double a)
Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.static double
atan(double a)
Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.static double
atan2(double y, double x)
Returns the angle theta from the conversion of rectangular coordinates (x
,y
) to polar coordinates (r, theta).static double
cbrt(double a)
Returns the cube root of adouble
value.static double
ceil(double a)
Returns the smallest (closest to negative infinity)double
value that is greater than or equal to the argument and is equal to a mathematical integer.static double
copySign(double magnitude, double sign)
Returns the first floating-point argument with the sign of the second floating-point argument.static float
copySign(float magnitude, float sign)
Returns the first floating-point argument with the sign of the second floating-point argument.static double
cos(double a)
Returns the trigonometric cosine of an angle.static double
cosh(double x)
Returns the hyperbolic cosine of adouble
value.static int
decrementExact(int a)
Returns the argument decremented by one, throwing an exception if the result overflows anint
.static long
decrementExact(long a)
Returns the argument decremented by one, throwing an exception if the result overflows along
.static double
exp(double a)
Returns Euler's number e raised to the power of adouble
value.static double
expm1(double x)
Returns ex -1.static double
floor(double a)
Returns the largest (closest to positive infinity)double
value that is less than or equal to the argument and is equal to a mathematical integer.static int
floorDiv(int x, int y)
Returns the largest (closest to positive infinity)int
value that is less than or equal to the algebraic quotient.static long
floorDiv(long x, long y)
Returns the largest (closest to positive infinity)long
value that is less than or equal to the algebraic quotient.static int
floorMod(int x, int y)
Returns the floor modulus of theint
arguments.static long
floorMod(long x, long y)
Returns the floor modulus of thelong
arguments.static int
getExponent(double d)
Returns the unbiased exponent used in the representation of adouble
.static int
getExponent(float f)
Returns the unbiased exponent used in the representation of afloat
.static double
hypot(double x, double y)
Returns sqrt(x2 +y2) without intermediate overflow or underflow.static double
IEEEremainder(double f1, double f2)
Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.static int
incrementExact(int a)
Returns the argument incremented by one, throwing an exception if the result overflows anint
.static long
incrementExact(long a)
Returns the argument incremented by one, throwing an exception if the result overflows along
.static double
log(double a)
Returns the natural logarithm (base e) of adouble
value.static double
log10(double a)
Returns the base 10 logarithm of adouble
value.static double
log1p(double x)
Returns the natural logarithm of the sum of the argument and 1.static double
max(double a, double b)
Returns the greater of twodouble
values.static float
max(float a, float b)
Returns the greater of twofloat
values.static int
max(int a, int b)
Returns the greater of twoint
values.static long
max(long a, long b)
Returns the greater of twolong
values.static double
min(double a, double b)
Returns the smaller of twodouble
values.static float
min(float a, float b)
Returns the smaller of twofloat
values.static int
min(int a, int b)
Returns the smaller of twoint
values.static long
min(long a, long b)
Returns the smaller of twolong
values.static int
multiplyExact(int x, int y)
Returns the product of the arguments, throwing an exception if the result overflows anint
.static long
multiplyExact(long x, long y)
Returns the product of the arguments, throwing an exception if the result overflows along
.static int
negateExact(int a)
Returns the negation of the argument, throwing an exception if the result overflows anint
.static long
negateExact(long a)
Returns the negation of the argument, throwing an exception if the result overflows along
.static double
nextAfter(double start, double direction)
Returns the floating-point number adjacent to the first argument in the direction of the second argument.static float
nextAfter(float start, double direction)
Returns the floating-point number adjacent to the first argument in the direction of the second argument.static double
nextDown(double d)
Returns the floating-point value adjacent tod
in the direction of negative infinity.static float
nextDown(float f)
Returns the floating-point value adjacent tof
in the direction of negative infinity.static double
nextUp(double d)
Returns the floating-point value adjacent tod
in the direction of positive infinity.static float
nextUp(float f)
Returns the floating-point value adjacent tof
in the direction of positive infinity.static double
pow(double a, double b)
Returns the value of the first argument raised to the power of the second argument.static double
random()
Returns adouble
value with a positive sign, greater than or equal to0.0
and less than1.0
.static double
rint(double a)
Returns thedouble
value that is closest in value to the argument and is equal to a mathematical integer.static long
round(double a)
Returns the closestlong
to the argument, with ties rounding to positive infinity.static int
round(float a)
Returns the closestint
to the argument, with ties rounding to positive infinity.static double
scalb(double d, int scaleFactor)
Returnsd
× 2scaleFactor
rounded as if performed by a single correctly rounded floating-point multiply to a member of the double value set.static float
scalb(float f, int scaleFactor)
Returnsf
× 2scaleFactor
rounded as if performed by a single correctly rounded floating-point multiply to a member of the float value set.static double
signum(double d)
Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero, -1.0 if the argument is less than zero.static float
signum(float f)
Returns the signum function of the argument; zero if the argument is zero, 1.0f if the argument is greater than zero, -1.0f if the argument is less than zero.static double
sin(double a)
Returns the trigonometric sine of an angle.static double
sinh(double x)
Returns the hyperbolic sine of adouble
value.static double
sqrt(double a)
Returns the correctly rounded positive square root of adouble
value.static int
subtractExact(int x, int y)
Returns the difference of the arguments, throwing an exception if the result overflows anint
.static long
subtractExact(long x, long y)
Returns the difference of the arguments, throwing an exception if the result overflows along
.static double
tan(double a)
Returns the trigonometric tangent of an angle.static double
tanh(double x)
Returns the hyperbolic tangent of adouble
value.static double
toDegrees(double angrad)
Converts an angle measured in radians to an approximately equivalent angle measured in degrees.static int
toIntExact(long value)
Returns the value of thelong
argument; throwing an exception if the value overflows anint
.static double
toRadians(double angdeg)
Converts an angle measured in degrees to an approximately equivalent angle measured in radians.static double
ulp(double d)
Returns the size of an ulp of the argument.static float
ulp(float f)
Returns the size of an ulp of the argument.
Field Detail
E
public static final double E
Thedouble
value that is closer than any other to e, the base of the natural logarithms.- See Also:
- Constant Field Values
PI
public static final double PI
Thedouble
value that is closer than any other to pi, the ratio of the circumference of a circle to its diameter.- See Also:
- Constant Field Values
Comentarios
Publicar un comentario